在皮肤病学诊断中,移动皮肤病学助理收集的私人数据存在于患者的分布式移动设备上。联合学习(FL)可以使用分散数据来训练模型,同时保持数据本地化。现有的FL方法假设所有数据都有标签。但是,由于高标签成本,医疗数据通常没有完整的标签。自我监督的学习(SSL)方法,对比度学习(CL)和蒙版自动编码器(MAE)可以利用未标记的数据来预先培训模型,然后用有限的标签进行微调。但是,组合SSL和FL有独特的挑战。例如,CL需要不同的数据,但每个设备仅具有有限的数据。对于MAE而言,尽管基于视觉变压器(VIT)的MAE在集中学习中具有更高的准确性,但尚未研究MAE在未标记数据的FL中的性能。此外,服务器和客户端之间的VIT同步与传统CNN不同。因此,需要设计特殊的同步方法。在这项工作中,我们提出了两个联邦自制的学习框架,用于具有有限标签的皮肤病学诊断。第一个具有较低的计算成本,适用于移动设备。第二个具有高精度,适合高性能服务器。根据CL,我们提出了与功能共享(FedClf)的联合对比度学习。共享功能可用于不同的对比信息,而无需共享原始数据以获得隐私。根据MAE,我们提出了Fedmae。知识拆分将所学的全球知识与每个客户分开。只有全球知识才能汇总为更高的概括性能。关于皮肤病学数据集的实验表明,所提出的框架的精度优于最先进的框架。
translated by 谷歌翻译
有监督的深度学习需要大量标记的数据才能实现高性能。但是,在医学成像分析中,每个站点可能只有有限的数据和标签,这使得学习无效。联合学习(FL)可以从分散数据中学习共享模型。但是传统的FL需要全标签的数据进行培训,这非常昂贵。自我监督的对比学习(CL)可以从未标记的数据中学习进行预训练,然后进行微调,以有限的注释。但是,在FL中采用CL时,每个站点上的数据多样性有限,使联合对比度学习(FCL)无效。在这项工作中,我们提出了两个联合自制的学习框架,用于体积医学图像分割,并有限注释。第一个具有高精度,并适合高性能服务器,并具有高速连接。第二个具有较低的通信成本,适用于移动设备。在第一个框架中,在FCL期间交换了功能,以向每个站点提供各种对比度数据,以使本地CL保持原始数据的私密性。全局结构匹配将不同站点之间的统一特征空间保持一致。在第二个框架中,为了降低功能交换的通信成本,我们提出了一种优化的方法FCLOPT,该方法不依赖于负样本。为了减少模型下载的通信,我们提出了预测目标网络参数的预测目标网络更新(PTNU)。基于PTNU,我们建议距离预测(DP)以删除目标网络的大多数上传。在心脏MRI数据集上的实验表明,与最先进的技术相比,提出的两个框架显着改善了分割和泛化性能。
translated by 谷歌翻译
模型压缩(例如修剪和量化)已广泛应用于在资源有限的经典设备上优化神经网络。最近,对变分量子电路(VQC)的兴趣越来越大,即量子计算机上的一种神经网络(又称量子神经网络)。众所周知,近期的量子设备具有高噪声和有限的资源(即量子位,Qubits);但是,如何压缩量子神经网络尚未得到彻底研究。人们可能会认为将经典压缩技术应用于量子场景是很简单的。但是,本文表明,量子和经典神经网络的压缩之间存在差异。根据我们的观察,我们声称必须参与压缩过程。最重要的是,我们提出了第一个系统的框架,即CompVQC,以压缩量子神经网络(QNNS)。在CompVQC中,关键组件是一种新型的压缩算法,该算法基于乘数的交替方向方法(ADMM)。方法。实验证明了COMPVQC的优势,以微不足道的精度下降(<1%)降低了电路深度(几乎超过2.5%),这表现优于其他竞争对手。另一个有前途的事实是,我们的COMPVQC确实可以促进QNN在近期噪声量子设备上的鲁棒性。
translated by 谷歌翻译
联合学习(FL)使分布式客户端能够学习共享模型以进行预测,同时保留每个客户端的培训数据本地。然而,现有的FL需要完全标记的培训数据,这是由于高标签成本和专业要求的要求而不方便或有时不可行。在许多现实设置中,缺乏标签会使流行不切实际。自我监督学习可以通过从未标记的数据学习来解决这一挑战,从而可以广泛使用FL。对比学习(CL)是一种自我监督的学习方法,可以有效地学习来自未标记数据的数据表示。然而,Clipers上收集的分布式数据通常在客户端之间通常不是独立和相同分布(非IID),并且每个客户端只有很少的数据类,这会降低CL和学习的表示的性能。为了解决这个问题,我们提出了由两种方法组成的联邦对比学习框架:特征融合和邻居匹配,通过该邻居匹配,以便获得更好的数据表示来实现客户端之间的统一特征空间。特征融合提供远程功能,作为每个客户端的准确对比信息,以获得更好的本地学习。邻域匹配进一步将每个客户端的本地功能对齐至远程功能,从而可以了解客户端之间的群集功能。广泛的实验表明了拟议框架的有效性。它在IID数据上以11 \%的方式表达了其他方法,并匹配集中学习的性能。
translated by 谷歌翻译
随着实际量子计算机中的量子位数(QUBits)的数量恒定增加,实现和加速量子计算机上的普遍深入学习正在成为可能。随着这种趋势,基于量子神经元的不同设计出现了量子神经结构。 Quantum深度学习中的一个基本问题出现:什么是最好的量子神经结构?灵感来自古典计算的神经结构设计,该古典计算通常采用多种类型的神经元,本文首次尝试混合量子神经元设计来构建量子神经结构。我们观察到现有的量子神经元设计可能是完全不同但互补的,例如来自变分量子电路(VQC)和量子流的神经元。更具体地说,VQC可以应用真实值的权重,但遭受扩展到多个层,而量子流可以有效地构建多层网络,但仅限于使用二进制权重。要采取各自的优势,我们建议将它们混合在一起并弄清楚无缝连接的方法,而无需额外的昂贵测量。我们进一步研究了混合量子神经元的设计原理,这可以为未来提供量子神经结构勘探的指导。实验结果表明,具有混合量子神经元的鉴定的量子神经结构可以在MNIST数据集中达到90.62%的准确性,而VQC和量子流量分别比为52.77%和69.92%。
translated by 谷歌翻译
值得信赖的强化学习算法应有能力解决挑战性的现实问题,包括{Robustly}处理不确定性,满足{安全}的限制以避免灾难性的失败,以及在部署过程中{prencepentiming}以避免灾难性的失败}。这项研究旨在概述这些可信赖的强化学习的主要观点,即考虑其在鲁棒性,安全性和概括性上的内在脆弱性。特别是,我们给出严格的表述,对相应的方法进行分类,并讨论每个观点的基准。此外,我们提供了一个前景部分,以刺激有希望的未来方向,并简要讨论考虑人类反馈的外部漏洞。我们希望这项调查可以在统一的框架中将单独的研究汇合在一起,并促进强化学习的可信度。
translated by 谷歌翻译
安全的加强学习(RL)旨在学习在将其部署到关键安全应用程序中之前满足某些约束的政策。以前的原始双重风格方法遭受了不稳定性问题的困扰,并且缺乏最佳保证。本文从概率推断的角度克服了问题。我们在政策学习过程中介绍了一种新颖的期望最大化方法来自然纳入约束:1)在凸优化(E-step)后,可以以封闭形式计算可证明的最佳非参数变异分布; 2)基于最佳变异分布(M-step),在信任区域内改进了策略参数。提出的算法将安全的RL问题分解为凸优化阶段和监督学习阶段,从而产生了更稳定的培训性能。对连续机器人任务进行的广泛实验表明,所提出的方法比基线获得了更好的约束满意度和更好的样品效率。该代码可在https://github.com/liuzuxin/cvpo-safe-rl上找到。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译